STM32输出互补死区刹车PWM
  fLutY3C6VwgE 2023年11月19日 15 0

STM32输出互补死区刹车PWM_#include


互补死区刹车原理这里不详述

互补理解为相反的信号

死区简单理解为信号跳变的缓冲时间

刹车简单理解为暂停信号输出,既然是暂停意味着放开后会再次启动

代码分享

#include "AdvancedTim.h"
#include "sys.h"
#include "stm32f10x_tim.h"
//高级定时器IO口配置
void advancedTim_gpio_init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
  // PIN8配置为PWM输出
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
  GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_8;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOA, &GPIO_InitStructure);

  // PIN13配置为PWM互补输出
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
  GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_13;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOB, &GPIO_InitStructure);

  // 输出比较通道刹车通道 GPIO 初始化
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
  GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_12;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
	// BKIN引脚默认先输出低电平
	GPIO_ResetBits(GPIOB,GPIO_Pin_12);	
}
//高级定时器模式配置
void advancedTim_mode_config(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);

	/*--------------------时基结构体初始化-------------------------*/
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_TimeBaseStructure.TIM_Period=7;	//周期
	TIM_TimeBaseStructure.TIM_Prescaler= 8;	//预分频
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;//死区预分频	
	TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;// 计数器计数模式,设置为向上计数		
	TIM_TimeBaseStructure.TIM_RepetitionCounter=0;// 重复计数器的值,没用到不用管	
	// 初始化定时器
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

	/*--------------------输出比较结构体初始化-------------------*/		
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;// 配置为PWM模式1
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;// 输出使能
	TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;// 互补输出使能 
	TIM_OCInitStructure.TIM_Pulse = 4;// 设置占空比大小
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;// 输出通道电平极性配置
	TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;// 互补输出通道电平极性配置
	TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;// 死区时电平极性配置
	TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;//互补输出死区电平极性配置
	TIM_OC1Init(TIM1, &TIM_OCInitStructure);
	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);

	/*-------------------刹车和死区结构体初始化-------------------*/
	// 有关刹车和死区结构体的成员具体可参考BDTR寄存器的描述
  TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
  TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
  TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
  TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
	// 输出比较信号死区时间配置,具体如何计算可参考 BDTR:UTG[7:0]的描述
	// 这里配置的死区时间为152ns
  TIM_BDTRInitStructure.TIM_DeadTime = 11;
  TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
	// 当BKIN引脚检测到高电平的时候,输出比较信号被禁止,就好像是刹车一样
  TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
  TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
  TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
	
	// 使能计数器
	TIM_Cmd(TIM1, ENABLE);	
	// 主输出使能,当使用的是通用定时器时,这句不需要
	TIM_CtrlPWMOutputs(TIM1, ENABLE);
}
//高级定时器初始化配置
void advancedTim_init(void)
{
	advancedTim_mode_config();
	advancedTim_gpio_init(); 
}


这里再分享两个公式

定时器周期=系统时钟/预分频*重装载值

死区时间寄存器设置的值=死区时间/(系统时钟/死区分频)取倒数,这里注意单位转换 1mhz=1us=10*1000ns



【版权声明】本文内容来自摩杜云社区用户原创、第三方投稿、转载,内容版权归原作者所有。本网站的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@moduyun.com

  1. 分享:
最后一次编辑于 2023年11月19日 0

暂无评论

推荐阅读
  QtpjMRSUUfXb   2023年12月08日   37   0   0 引脚#include看门狗
  tprTMCWDkFAR   2023年12月07日   13   0   0 头文件#include初始化
  QtpjMRSUUfXb   2023年12月06日   21   0   0 卷积#includeCUDA
  UYSNSBVoGd8R   2023年12月08日   13   0   0 引脚#include#define
fLutY3C6VwgE
最新推荐 更多