NP完全性的解读与延伸
  2ByFsHD6kzN2 2023年11月02日 35 0


在《CLRS》(算法导论)第 33 章 的 [NP 完全性] 这地方,花了很大力气才搞明白 部分【题目】和【推理逻辑】。

所以,想写一份入门级的解读。

 

                                                                                      《目录》

          判定问题

  • 图灵停机问题
  • 不可估约的复杂度
  • 计算复杂度
  • 可满足性问题

 


判定问题

大多数计算机科学家的工作是把现实问题转换为数学问题,判断这个数学问题是否可计算,如果是,就把数学问题描述成可计算问题。

“可计算”,就是不但可以算,还能算出结果来,对于计算机科学家来说:给定输入,经过计算机的有限次计算,能得到一个确定的输出就是 “可计算”。

NP完全性的解读与延伸_停机问题

这种问题就被称为 “判定问题”。

判定问题:给定输入参数的特定值,问题就有明确的答案。

 

如果第十个问题能在有限的运算步骤得到解,这个问题就是 【判定问题】 下的一种子问题,“可判定问题” 或 “可计算问题”。

可判定问题:能够设计一个算法或计算机程序,在所有情况下都能给出正确的答案。

 

如果无解,那就是 【判定问题】下的另一种子问题,“不可判定问题”、“不可计算问题”。

不可判定问题:无法设计一个在所有情况下都能给出正确答案的算法或计算机程序。

 


图灵停机问题

示例是理解的试金石。

判定方法:死循环。

  • 如果这个问题是【可计算问题】,计算机程序一定会停下来;
  • 如果这个问题是【不可计算问题】,计算机程序会一直计算,相当于 死循环。

比如,以停机问题为例,看看判定的过程到底是咋样的~

因为死循环是判定问题的判定方法,那么,我们能不能打造一个算法用于检测另一个程序是否会出现死循环呢?

有没有这样一个程序,TA的输入是任何一段代码和这段代码的输入参数,而TA的输出则是这段代码所代表的程序,在那个参数之下运行起来之后会不会自动停机 —— 如果判断会停机,就输出“1”;如果判断不会停机、会死循环,就输出“0”。

想要做到这一点,这个判断程序必须只读、而不能去执行那段代码 —— 因为如果执行,而那段代码又真的不停机的话,计算机就会陷入死循环,这个判断程序就不能输出“0”了。

这个判断程序得能像一个高水平程序员一样,看一眼写的代码就知道其中有没有死循环。

 

后来,这个问题被图灵解决了,所以也叫“图灵停机问题”。

图灵的答案是:“不可能”。

在理论上就不可能存在那样的判断程序。

这是一个不可计算的问题。

NP完全性的解读与延伸_复杂度_02

Program (x)
If Halt(x, x) then
    永远循环
Else 停机
End


NP完全性的解读与延伸_复杂度_03

 


不可估约的复杂度

那些不可计算的问题的复杂度是 不可估约 的,哪怕我们知道TA的计算规则,不等TA自个演化我们还是预测不了结果。

这种不可预测的复杂度是由 史蒂芬·沃尔夫勒姆(Stephen Wolfram) 提出的,软件 Mathematica 、Wolfram|Alpha 就是大佬的作品。

示例是理解的试金石。

我们从一个简单的游戏说起:元胞自动机。

NP完全性的解读与延伸_死循环_04

这张图叫“元胞自动机”,游戏非常简单。 

从上往下看,您可以看到图中有很多小格子。

最上面一行只有一个黑点。此下每一行,每个格子是黑是白,由TA头顶上三个格子的颜色决定。

具体的规则一共有八条,都列在图的下面。 

如,若上方三个都是黑格,那这一格子就是黑格。如果上方三个格子是【黑-黑-白】,接下来依然是黑格;如果是【黑-白-黑】,接下来是白格,以此类推。 

这样按照规则一行一行地画满整个画面,就得到一个三角形的图案。

这个规则非常简单,产生图案也不复杂。 

但如果对规则稍加变动,就会得到非常不一样的图形。

如果修改俩个规则如下图:

NP完全性的解读与延伸_复杂度_05

产生的图形如下:

NP完全性的解读与延伸_复杂度_06

图中的三角形有大有小,层层嵌套。但这也是简单规则所产生的简单图形,有一定结构但不复杂。

 

忽略【图2】,对比【图1】、【图2】的黄色部分,这里修改了俩个规则:

NP完全性的解读与延伸_复杂度_07

产生的图形如下:

NP完全性的解读与延伸_复杂度_08

依然是看似平常的八条规则,但所产生的图形就变得非常奇怪!!!

这张图看似有规律,但并不整齐,只能说有着某种不为人知的结构。

如果让这张图继续推演下去:

NP完全性的解读与延伸_复杂度_09

最左侧的结构是简单的,越往右越复杂,有很多三角形的图案,可是这些图案的出现也没有固定规律。 

这张图,才是真正意义上的“复杂”。 

产生这张图的这套规则,被沃尔夫勒姆命名为“ 第30号规则 ” —— 沃尔夫勒姆甚至说,这个“第30号规则”,就是他本人迄今为止最大的发现! 

一套特别简单的规则,居然演化出了一个特别复杂的结果。 

而且沃尔夫勒姆说,这个结果的“复杂”,跟你用任何一套复杂规则所能产生的复杂结果的“复杂”,是一样的“复杂”。

后来,沃尔夫勒姆在其著作《A New Kind of Science》中,提出了 “计算等效原理”。

 

这一原理说,像前面那些简单程序得到的是简单结果,但只要结果超过了一个很小的界限,所有的程序,不管有多复杂,最后得到的结果,都是同等的复杂,并不能说哪个更复杂。

再说白了,我们可以得出一个非常有意思的结论:即使是再先进的事物,TA的复杂度和我们刚刚看到的图形的复杂度,其实也是一样的。
据此,沃尔夫勒姆就得到几个非常重要、甚至能让人震惊的思想。

首先是计算不可约性(Computational Irreducible) —— 真正复杂的东西是无法进行简化的。

这就导致一个问题:没有哪个复杂系统是可预测的! 

比如您要预测一个什么系统,您其实有一个潜在的假设,就是您认为您有一个比这个系统更复杂的工具。

所以面对复杂系统,我们都是把TA简化成一个简单的模型,而后用超出这个简单模型的演化速度的计算速度去实现得知这个模型的未来,并以此预测原来那个复杂系统的未来。 

如预测天气,您得先把自然系统的风云运动简化,而后计算这个简化的模型。

您指望计算这个简化模型的速度比天气实际演化的速度快,您才是真正的预测。 

可是如果这个系统本身是不可简化的 —— 计算不可约,您就无法预测TA,唯一的办法只能坐等系统自身演化! 

比如您要问我第 30 号规则产生的那个图形的第十万行上都有什么,我就没有任何捷径可走,只能老老实实把图形画到第十万行。 

沃尔夫勒姆说,一切真正的复杂系统其实都是计算不可约的,也就是不可预测的

这就很有意思了 —— 人类历史就是计算不可约的复杂!也正因为此,我们现在活着所干的一切事情才有成就感,我们才谈得上自由意志 —— 否则如果做什么事别人早就预测好了,我们演这一遍历史还有什么意思? 

这里要附带说明一下,这个“计算不可约性”和“计算等效原理”,现在有人认为,在沃尔夫勒姆之前就有别人得出过类似的结论,所以沃尔夫勒姆的主要成就是实践上的而不是计算理论上的……我对这个官司没有发言权,咱们先不去管。

图形从左到右,毫无规律,看似是不可约的,但是实际上,他是通过简单的规则,通过计算机从上往下绘制的。

这个图形之所以不可预测,是因我们没有找到这个简单的规则;不过,就是知道规则,也只能老老实实的演化过来。

 


计算复杂度

NP完全性的解读与延伸_复杂度_10

NP完全性的解读与延伸_复杂度_11

NP完全性的解读与延伸_死循环_12

NP完全性的解读与延伸_停机问题_13


// 手打,要是打错了,就算了吧
procedure Random_walk(f, n, R)
{
    r = 1
 
    while (r <= R){
        a = <随机选取拥有 n 个变量的分配方式>
        k = 1
 
        while (k <= 3n){
            if <分配方式 a 满足逻辑公式f>
                return "可以满足"
            
            c = <逻辑公式得到分配方式 a 不满足的子句>
            x = <从子句 c 中随机选取变量>
            a = <对分配方式 a 的变量 x 进行非运算得到新的分配方式>
            k += 1
        }
 
            r += 1    
    }
 
    return "大概无法满足"
}

其他关于 NP 完全性的介绍,《算法导论》很详细。


【版权声明】本文内容来自摩杜云社区用户原创、第三方投稿、转载,内容版权归原作者所有。本网站的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@moduyun.com

  1. 分享:
最后一次编辑于 2023年11月08日 0

暂无评论

推荐阅读
2ByFsHD6kzN2