【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码
  sighgy4X1iDp 2023年11月02日 81 0

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

RF算法原理

随机森林算法的原理可以通过以下公式概括:

  1. 对于给定的训练集,假设有N个样本,每个样本有M个特征。
  2. 从训练集中进行有放回抽样,产生B个大小相同的训练集(bootstrap样本)。
  3. 对于每个训练集,使用决策树算法构建一颗决策树模型。在构建决策树的过程中,对于每个节点,在随机选择的m个特征中选择最优的分割特征。
  4. 重复步骤2和步骤3,构建B颗决策树模型。
  5. 对于新样本,通过B颗决策树模型的投票或平均得到最终的预测结果。

其中,随机森林算法通过引入两种随机性来提高模型的泛化能力:bootstrap抽样和随机选择特征。Bootstrap抽样保证了每颗决策树的训练集具有一定的随机性,随机选择特征使得每个决策树的分割特征具有一定的差异性。这样可以减小过拟合风险,提高模型的鲁棒性和准确性。

RF算法流程

对于基于随机森林算法的数据回归预测,你可以使用随机森林回归模型来进行预测。随机森林是一种集成学习算法,它由多个决策树组成,每个决策树都是独立训练的。

以下是使用随机森林回归模型进行数据回归预测的一般步骤:

  1. 收集数据集:首先,你需要收集包含特征和目标变量的数据集。确保数据集中没有缺失值或异常值,并且进行适当的数据预处理。
  2. 拆分数据集:将数据集拆分为训练集和测试集。通常,你可以将大部分数据用于训练,剩余部分用于模型评估。
  3. 特征选择:根据实际情况选择适当的特征。可以通过统计分析、特征相关性等方法进行特征选择。
  4. 建立模型:使用训练集来构建随机森林回归模型。在每个决策树的训练过程中,可以通过随机选择特征和样本来增加模型的多样性。
  5. 模型训练:使用训练集对随机森林模型进行训练。模型会根据特征和目标变量之间的关系来学习。
  6. 模型预测:使用测试集对模型进行预测。通过比较预测结果与实际值,评估模型的性能。
  7. 模型评估:使用适当的评估指标(如均方误差、平均绝对误差等)来评估模型的准确性和性能。
  8. 调优和改进:根据评估结果,对模型进行调优和改进。你可以调整模型的参数、特征选择方法等,以提高模型的性能。
  9. 预测新数据:当模型满足要求后,可以使用它来预测新的未知数据。

⛄ 代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  训练模型
trees = 100;                                      % 决策树数目
leaf  = 5;                                        % 最小叶子数
OOBPrediction = 'on';                             % 打开误差图
OOBPredictorImportance = 'on';                    % 计算特征重要性
Method = 'regression';                            % 分类还是回归
net = TreeBagger(trees, p_train, t_train, 'OOBPredictorImportance', OOBPredictorImportance,...
      'Method', Method, 'OOBPrediction', OOBPrediction, 'minleaf', leaf);
importance = net.OOBPermutedPredictorDeltaError;  % 重要性

%%  仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  绘制误差曲线
figure
plot(1: trees, oobError(net), 'b-', 'LineWidth', 1)
legend('误差曲线')
xlabel('决策树数目')
ylabel('误差')
xlim([1, trees])
grid

%%  绘制特征重要性
figure
bar(importance)
legend('重要性')
xlabel('特征')
ylabel('重要性')

%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M;
mae2 = sum(abs(T_sim2' - T_test )) ./ N;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%%  绘制散点图
sz = 25;
c = 'b';

figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')

figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码_决策树

【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码_随机森林_02

【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码_随机森林_03

【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码_无人机_04

【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码_决策树_05

⛄ 参考文献

[1] 朱品光.基于随机森林回归算法的堆石坝爆破块度预测研究[D].天津大学[2023-07-21].

[2] 叶玲,张永军.一种基于随机森林回归预测算法的路灯智能节能方法:CN201610922265.6[P].CN107979900A[2023-07-21].

[3] 袁博,刘石,姜连勋,等.基于随机森林回归算法的住房租金预测模型[J].电脑编程技巧与维护, 2020(1):3.DOI:CNKI:SUN:DNBC.0.2020-01-009.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


【版权声明】本文内容来自摩杜云社区用户原创、第三方投稿、转载,内容版权归原作者所有。本网站的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@moduyun.com

  1. 分享:
最后一次编辑于 2023年11月08日 0

暂无评论

推荐阅读
sighgy4X1iDp