【GPU服务器】图像深度学习超分辨率放大(Real-ESRGAN)

前言

技术提要

ESRGAN全称为Enhanced Super-Resolution Generative Adversarial Networks

该技术相关论文:https://arxiv.org/pdf/1809.00219.pdf

太过复杂的技术原理不做赘述。

通过输入图像输入,邻近插值后寻找马赛克位置插值,同时对二次插值后的位置使用AI的模型进行消除噪声,消除伪影

开山之作为SRCNN

ESRGAN则是在以上所有技术上再先进一步,改进了质量

作者地址:github.com

运行环境需求

硬件

由于需要调用AI核心,而且针对的是图形处理,所以需要用到具有图形功能的设备

可以选购摩杜云的GPU服务器,推荐使用GT4或GN7机型,并安装好GRID驱动

驱动安装:GPU 云服务器 安装 NVIDIA GRID 驱动-操作指南-文档中心-摩杜云-摩杜云 (tencent.com)

测试图片:

原图 1340*1748

以下是测试内容及预期结果

其中,主观质量为放大线条连续度,越高越好

内容*放大倍数

显卡型号(显卡 | 显存)

主观质量

处理耗时/s

动画图片*4

NVIDIA Tesla T4 16G

9

19

动画图片*4

NVIDIA Tesla T4 GRID1/2 8G

9

35

动画图片*16(*4*4)

NVIDIA Tesla T4 16G

10

300+

动画图片*16(*4*4)

NVIDIA Tesla T4 GRID1/2 8G

10

150

这里推荐摩杜云的GN7机型,提供Tesla T4显卡,并预制好GPU GRID图形驱动

软件

需要用到图片训练模型(ESRGAN自带),训练的图片

模型下载:Tags · xinntao/ESRGAN · GitHub

使用方法教程

命令行调用

打开命令行,cd到realesrgan的目录

在这里,输入图片在 同目录下,为 input.jpg

.\realesrgan-ncnn-vulkan.exe -i input.jpg -o output.jpg -n realesrgan-x4plus-anime

参数

内容

-i

设置输入图片路径

-o

设置图片输出路径

-n

设置模型

如果不在同目录的,要用绝对路径,例如

F:\realsgan\input.png

带有空格的目录名,要用引号包括起来,例如

"F:\Develop file\realsgan\input test.png"

回车之后就可以进行处理了

执行到100%的时候就会在设置输出目录下输出 output.jpg

分辨率对比

正好放大了4倍

同时对比一下图片差异(左边原图,右边放大4倍)

未缩放
缩放500%

摩杜云自动助手调用

确认服务器已经安装 TATSVC

安装自动化助手

如果没有安装,请登录服务器,右键开始菜单,Powershell管理员打开

image.png

键入如下命令

wget https://tat-gz-1258344699.cos.ap-guangzhou.myqcloud.com/tat_agent_windows_i686.zip -OutFile .\tat_agent_windows_i686.zip;Expand-Archive -Path .\tat_agent_windows_i686.zip -DestinationPath .\tat_agent_windows_i686;.\tat_agent_windows_i686\install.bat;Remove-Item -Recurse -Force .\tat_agent_windows_i686, .\tat_agent_windows_i686.zip

回车

image.png

控制台新建命令

在云服务器控制台-自动化助手-我的命令(https://console.cloud.tencent.com/cvm/command

处新建一个命令

image.png

按图示完成配置

在命令内容里键入

.\realesrgan-ncnn-vulkan.exe -i {{input}} -o {{output}} -n realesrgan-x4plus-anime

其中,{{input}}{{output}}都是命令参数,方便执行的时候更改不同文件

这里展示下我的配置,推荐使用这串命令,这样每次就不用设置输出路径和名称了:

.\realesrgan-ncnn-vulkan.exe -i {{inputPath}}.{{ext}} -o {{inputPath}}_4x.{{ext}} -n realesrgan-x4plus-anime

其中,{{inputPath}}是输入路径,{{ext}}是后缀名

例如G:\OneDrive - ArSrNa CC\Wallpaper\22-16061GFT0400.jpg转化过去就是

$inputPath="G:\OneDrive - ArSrNa CC\Wallpaper\22-16061GFT0400"
$ext="jpg"

执行的时候只需要这么填写参数

参数

内容

说明

inputPath

"G:\OneDrive - ArSrNa CC\Wallpaper\22-16061GFT0400"

输入的路径(包含到文件)

ext

"jpg"

后缀名

执行命令

对命令单击执行

image.png

调整好参数,选中主机

image.png

最后点击执行命令就可以跟踪命令运行的状态了

image.png

完成之后会有提示

image.png

回到服务器,找到 input_out.jpg ,就是输出的结果

image.png

API调用

操作

通过API操作自动化助手,对服务器进行处理,这种方法适用于Web,app等在线处理平台

首先在API Explorer里找到TAT产品触发命令(在这里

根据参数填写

image.png

参数名

参数

说明

Region

地域

要与命令,CVM所在地域一致

CommandId

命令ID

可在自动化助手里面找到ID

InstanceIds.N

实例ID

可在CVM控制台获取

Parameters

参数

Command 的自定义参数。字段类型为json encoded string。如:{\"varA\": \"222\"}。 key为自定义参数名称,value为该参数的默认取值。kv均为字符串型。 如果未提供该参数取值,将使用 Command 的 DefaultParameters 进行替换。 自定义参数最多20个。 自定义参数名称需符合以下规范:字符数目上限64,可选范围【a-zA-Z0-9-_】。

如上所示,之前的示例对应的参数表如下表

参数名

参数

Region

ap-chengdu

CommandId

cmd-mg...sq

InstanceIds.N

array("ins-0b...oy7")

Parameters

{\"inputPath\":\"input\",\"ext\":\"jpg\"}

切换到代码生成处,选择业务对应代码进行代码改编即可,将("SecretId", "SecretKey")改为自己的秘钥,可在访问管理获得

例如我的Nodejs,将函数封包后如下:

// Depends on tencentcloud-sdk-nodejs version 4.0.3 or higher
const tencentcloud = require("tencentcloud-sdk-nodejs");
const TatClient = tencentcloud.tat.v20201028.Client;

const clientConfig = {
  credential: {
    secretId: "SecretId",
    secretKey: "SecretKey",
  },
  region: "ap-chengdu",
  profile: {
    httpProfile: {
      endpoint: "tat.tencentcloudapi.com",
    },
  },
};

function esrgan(inputPath,ext){
const client = new TatClient(clientConfig);
const params = {
    "CommandId": "cmd-mg...esq",
    "InstanceIds": [
        "ins-0b...oy7"
    ],
    "Parameters": JSON.stringfy({
	   inputPath : inputPath,
       ext : ext
      })
};
client.InvokeCommand(params).then(
  (data) => {
    return(data);
  },
  (err) => {
    return("error", err);
  }
);
}

调用的时候只用 esrgan('文件','后缀')即可

查询执行过程与结果

使用 查询执行任务 (TAT) 这个API即可获得执行信息

API Explorer

在这里,参数需要过滤

先查询账号下所有执行的任务,然后过滤最新的任务,把隐藏输出改为False

参数

设置

说明

Region

地域

与命令地域相同

Filters.N

过滤条件

invocation-id - String - 是否必填:否 -(过滤条件)按照执行活动ID过滤。invocation-task-id - String - 是否必填:否 -(过滤条件)按照执行任务ID过滤。 instance-id - String - 是否必填:否 -(过滤条件)按照实例ID过滤。 command-id - String - 是否必填:否 -(过滤条件)按照命令ID过滤。 每次请求的 Filters 的上限为10, Filter.Values 的上限为5。参数不支持同时指定 InvocationTaskIds 和 Filters

HideOutput

是否隐藏执行内容

这里为了查询,设置为False

Filters.N如此设置

调用结果

点击在线调用

确认正常后生成代码,最后嵌入业务即可

软件直接执行(推荐)

我自己开发了一个软件,并且已开源,可以直接用图形界面进行操作,简洁方便

https://arsrna.coding.net/public/aresrgan/apps/git/files

下载地址:https://arsrna.coding.net/s/025a61cd-dd39-4503-a3c1-16a69a9290eb,查看密码:w6ho

同时也推荐一些较好的软件:

总结

老图片,旧照片,经过压缩的图片,如果你想用来做壁纸,用来做背景,画质会惨不忍睹,又或者联系不上作者拿到原图,不方便拿到的原图,通过这个技术修复老照片,将会是一个取中的方式。

但是因为处理照片需要极大的算力,老电脑可能无法快速完成,借助摩杜云GPU服务器,依据分布式的优点和云端的稳定性,我们能够快速且方便的对图片进行处理,同时还保证了服务的稳定运行,不干扰本地的工作,一切都在云端

Powered by Ar-Sr-Na 更多可能,需要我们共同探索

个人成就
腾云先锋
文章
5
阅读量
31604
获赞
5005
作者排名
693