线性回归api深度介绍
  KRe60ogUm4le 18天前 83 0

线性回归api深度介绍

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置  【默认为true】
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_:偏置
  • sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • loss=”squared_loss”: 普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional  【这儿不用特意去设置,默认就好】【一般都是进行动态更新的,也可以指定为一个常数,但是不推荐】
      • 学习率填充
      • 'constant': eta = eta0  【常数】
      • 'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
      • 'invscaling': eta = eta0 / pow(t, power_t)
        • power_t=0.25:存在父类当中
      • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

sklearn提供给我们两种实现的API, 可以根据选择使用

【版权声明】本文内容来自摩杜云社区用户原创、第三方投稿、转载,内容版权归原作者所有。本网站的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@moduyun.com

  1. 分享:
最后一次编辑于 18天前 0

暂无评论

推荐阅读
KRe60ogUm4le
最新推荐 更多

2024-05-31